If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+24y-12=0
a = 9; b = 24; c = -12;
Δ = b2-4ac
Δ = 242-4·9·(-12)
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{7}}{2*9}=\frac{-24-12\sqrt{7}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{7}}{2*9}=\frac{-24+12\sqrt{7}}{18} $
| 3n^2+5n-252=0 | | d-12=8 | | 3x-2x+20=3x | | 2c-40=-2c-20 | | 5x(x+6)=−50 | | -9=-(r-5)+11 | | 0=4t^2+4t-15 | | 60.6=6(m+2.4) | | 175m-125m+48,500=50,500-200 | | 17x+4=60 | | (n+4)÷(n+2)=54 | | 116+31+m1=180 | | 28=1/2(8h) | | 5–(7x+3)=-3 | | d=0.5(10)(9.0) | | 2x-12+3=2x^2-2x+10 | | 5–(7x+3)=-33 | | 2(6x+9)=12x-18 | | m1=116=31 | | a/3+5=-1 | | 6a^2=8a-25=-3 | | y=45+12 | | 2x+5=2x –3 | | 8k+6=-46 | | 30s+50=10s+370 | | 2(1-2x)=18 | | 2y−3=√3y^2−10y+12 | | 3x+2x=2x+9 | | 116+31=m1 | | 3n-9=48 | | -2(2r-8)=-8(-r-12) | | 7=2x+18 |